HVAC FUNDAMENTALS – ESSENTIAL TIPS & RULES OF THUMB

Feeling lost in the world of HVAC? This course is your foundation.

This introductory course serves as your gateway to mastering the fundamentals of HVAC systems. In this comprehensive 8-hour course, you will gain a solid understanding of:

- a. Core Systems: Distinguish between various HVAC systems, gaining insight into their unique characteristics, and their strengths and weaknesses.
- b. Application Expertise: Explore how different HVAC systems are best deployed across diverse settings, ranging from residential to commercial and beyond, optimizing comfort and efficiency in each environment.
- c. Foundational Knowledge: Grasp the fundamental principles of thermodynamics, heat transfer, and fluid dynamics that underpin the operation of HVAC systems.
- d. Heat Transfer Hacks: Explore core principles governing air and fluid behavior for efficient heat transfer and for optimal comfort control without complex equations.
- e. Fluid Flow Fundamentals: Grasp fluid flow principles affecting airflow and pressure in HVAC systems.
- f. Energy Efficiency Essentials: Understand key factors impacting HVAC performance and cost savings.

Embedded within the course are essential metrics, practical tips, and handy rules of thumb to accelerate your learning journey and help you make well-informed decisions.

Let's get started with essential metrics and rules of thumb.

ACRONYM FOR HVAC

- a. H: Heating
- b. V: Ventilation
- c. AC: Air conditioning

FUNCTIONS OF HVAC

	Subjects	Rules of Thumb
\mathbf{C}	Air conditioning	Comfort Standard: ASHRAE 55
		a. Temperature: 75±2°F
		b. Relative humidity (RH): 50±5%
		c. Air quality: Adequate ventilation and filtration.
6	Ventilation	Ventilation Standard: ASHRAE Standard 62.1.
		a. Typical ventilation rates: 15 to 20 cubic feet per minute (CFM) outdoor air per person.
		b. CO ₂ levels between 600-1000 ppm. Above 1000
		ppm is considered poor air.
\bigcirc	Filtration	Filtration Standard: ASHRAE 52.1.
		a. MERV 8 for pre-filters
		b. MERV 13 for final filters
3	Heating system	Comfort Standard: ASHRAE 55
		a. Temperature: 68 to $70^{\circ}F$
		b. Relative humidity (RH): 30% and 50% to avoid
		condensation and mold.
		c. Freeze control: above 32°F.

HVAC Capacity

Description	Rules of Thumb
Air-conditioning Capacity	HVAC systems rated in tons of refrigeration (TR): 1 TR
	= 12,000 BTU/hr. or about 3.5 kW (Thermal).

Relationship of Tons, BTU, and KW

	Main Unit (Ton)	Equivalent BTU	Equivalent kW
0	1 Ton	12,000 BTU	3.51 kW
0	1.5 Ton	18,000 BTU	5.27 kW
0	2 Ton	24,000 BTU	7.03 kW
0	2.5 Ton	30,000 BTU	8.79 kW
\bigcirc	3 Ton	36,000 BTU	10.55 kW

Classification of Refrigeration Systems

	Refrigeration Type	Rules of Thumb
\bigcirc	Low temperature	Systems at 32°F or lower: Refrigerators, freezers, ice
	refrigeration	makers.
	Medium temperature	Systems between 30°F and 45°F: Display cases,
	refrigeration	beverage coolers.
	High temperature	Systems between 45°F and 60°F: HVAC systems (air-
	refrigeration	based or hydronic).

HVAC Systems

System Type	Rules of Thumb
Air-based HVAC systems	Air circulation for heating and cooling: examples, Split
	and package units, furnaces.
Hydronic HVAC Systems	Chilled or hot water for heat transfer: example,
	Hydronic systems.

HVAC Control

Higher heat in a room requires more sensible heat removal capacity. Higher moisture in a room requires more latent heat removal capacity.

	Parameters	Rules of Thumb
	Air conditioner capacity	AC capacity in tons (1 ton = $12,000 \text{ BTU/hr}$); 80%
	(Total load)	sensible, 20% latent load.
	Sensible load	Sensible heat (ΔT) alters temperature, not moisture;
\smile		calculated using $Q = m * Cp * \Delta T$.
		Where, m is mass of air, Cp is specific heat of air and
		ΔT is the temperature difference.
	Latent load	Latent heat handles moisture changes; standard ACs
		focus more on sensible cooling.
	Temperature Control	Adjust air quantity or supply air temperature for desired
		heating or cooling.
	Humidity Control	In hot, humid regions, customized HVAC with deep coils
\smile		or dehumidifiers effective for moisture control.
		Increasing AC capacity alone may not resolve high
		humidity.

Type of HVAC systems

	HVAC Types	Rules of Thumb
	Window AC	Capacity: 0.5 - 2 tons; Individual room cooling in
		residential and small offices.
	Portable AC	Capacity: 0.5 - 2 tons; Movable cooling solution for
		various spaces.
	Single Split AC	Capacity: 0.75 - 3 tons; Cooling for individual rooms or
$\mathbf{}$		zones.
	Multi-Split AC	Capacity: 1.5 - 5 tons; Multiple indoor units connected
$\mathbf{}$		to one outdoor unit.
	VRF Systems	Capacity: 5 - 30 tons; Precise control for large
		buildings with multiple zones.

HVAC Types	Rules of Thumb
Package System	Capacity: 3 - 15 tons; Self-contained unit for rooftop or
	ground-level installation.
Package Through Wall	Capacity: 1 - 5 tons; Through-wall installation for
	localized cooling.
Rooftop Units: Capacity	5 - 25 tons; Commercial buildings with rooftop
	installation.
Air-Source Heat Pump	Capacity: 1 - 5 tons; Heating and cooling for single
	spaces.
Ground-Source Heat Pump	Capacity: 2 - 10 tons; High efficiency using ground
	temperature.
Water-Source Heat Pump	Capacity: 1 - 10 tons; Efficient heating/cooling with
	water source/sink.
Air-Cooled Chiller	Capacity: 10 - 300 tons; Commercial cooling using air
	for heat rejection.
Water-Cooled Chiller	Capacity: 100 - 5000 tons; Commercial cooling using
	water for heat rejection.
District Cooling System	Capacity: 10000 – 100000 tons; Centralized cooling for
	multiple buildings.
Furnaces (Air-based):	20,000 - 150,000 BTU/h; Residential, commercial,
Capacity	industrial space heating.
Boiler (Hydronic): Capacity	Varies; Heats water for radiator, underfloor heating, or
	commercial use.

Thermodynamics

	Fundamental Principles of	Rules of Thumb
	Thermodynamics	
0	First Law	Energy conservation: Energy is neither created nor destroyed, only transferred.
0	Second Law	Heat transfer: Moves from higher entropy to lower entropy, hotter to cooler areas.
0	Boyle's Law	Pressure and volume relationship: At constant temperature, pressure and volume are inversely related - pressure up, volume down, and vice versa.

	Fundamental Principles of	Rules of Thumb
	Thermodynamics	
C	Charles's Law	Temperature impacts air volume: Heating expands air,
		cooling contracts it.
0	Cooling and Heating	In HVAC, heat quantity is determined by temperature
		difference (ΔT), mass (m), and specific heat (Cp) and is
		given by equation $m^*Cp^*\Delta T$.
	Water or Air	Water has much higher specific heat (about 4 times)
		than air, making it much more efficient in heating and
		cooling systems.

Refrigeration Cycles

	Type of Refrigeration	Rules of Thumb
0	Vapor Compression Cycle	Uses mechanical compressors and refrigerant phase change for cooling in residential and commercial buildings.
0	Absorption Cycle	Employed in industrial settings, achieve cooling through absorption principles using lithium bromide (LiBr) as an absorbent, and heat sources like gas or steam. No compressors, minimal power use.

Components of Vapor Compression Cycle

	Air	conditioner	Rules of Thumb
	Components		
0	Compressor		Compressors raise refrigerant pressure, consuming 0.6 KW to 1.2 KW per ton, depending on type and heat rejection method. During compression: a. Pressure – increase b. Temperature – increase c. Refrigerant state is gas
0	Condenser		Condensers release indoor heat to the outdoor

You need to purchase this course to continue viewing this document.